If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.5x^2+28x+35=0
a = 3.5; b = 28; c = +35;
Δ = b2-4ac
Δ = 282-4·3.5·35
Δ = 294
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{294}=\sqrt{49*6}=\sqrt{49}*\sqrt{6}=7\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-7\sqrt{6}}{2*3.5}=\frac{-28-7\sqrt{6}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+7\sqrt{6}}{2*3.5}=\frac{-28+7\sqrt{6}}{7} $
| 200m-125m+48875=4500-150m | | 6/x=0.22222 | | 6/x=0.2222 | | 6/x=0.222 | | 6/x=0.22 | | 7+1/2y=0 | | (x+15)^3=64 | | 6c-9-2c=-6 | | g-3/4=5 | | 5x+22=7x+6 | | 36-10x=18.3 | | -26=-2(c-38) | | -26=-2(c-38 | | 5/x=0.2 | | y-3-10y-7=0 | | 2h-18=-2 | | x/45=0.2 | | -6=t/3+-9 | | -2a+6=36 | | 20=4+0.75x | | 5k+6=5(k-1) | | 0.75=3x-0.45 | | I=3x+1 | | 0.1n=9 | | 5-3d=-1 | | 2m-(-4)=8 | | 20=3+0.75x | | 3x+8=3x+5x | | 56°(3x+7)°=90° | | 9x+4x-3x-5=15 | | 3x+8=3x+-3 | | -20x+27= |